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Abstract— Parkinson’s disease is a very common disease among elder population effecting approx 6.3 million 

people worldwide across all genders, races and cultures worldwide. It reduces quality of life of the patients due to 

motor and non-motor complications. In current paper four soft computing models i.e. Classification Tree, Cubist, 

Naïve Bayes and Linear Regression models are implemented for Parkinson’s disease diagnosis using gait 

features. Performances of these soft computing models are then evaluated based on performance measures viz. 

true positive, false positive, false negative, true negative, accuracy, sensitivity, specificity and RMSE to identify 

the best performing soft computing model to diagnose the disease. Comparison of average accuracy, sen sitivity, 

specificity and RMSE of the soft computing models over 5-rounds shown that Cubist model outperformed among 

others with average accuracy, sensitivity, specificity and RMSE being 86.336%, 89.480%, 81.934%, 0.318 

respectively on training datasets, and 69.720%, 73.632%, 64.242%, 0.504 respectively on testing datasets.  

Keywords— Soft Computing; Cubist; Classification Tree; Naïve Bayes; Linear Regression  

1. INTRODUCTION 

Parkinson’s disease is a very common disease among 

elder population effecting approx 6.3 million people 

worldwide across all genders, races and cultures 

worldwide [1].1 It reduces quality of life of the patients 

and increases economic burden on the patients and 

healthcare system of the country. Currently there is no 

cure available for the disease, but, its symptoms can be 

controlled and quality of life can be improved by taking 

various available treatments. Although, there’s no precise 

test available today to diagnose Parkinson’s disease, but, 

doctors attempt to diagnose it based on the disease 

symptoms and medical history. Hoehn and Yahr (H&Y) 

Scale, Schwab and England Activities of Daily Living 

(ADL) Scale, and Unified Parkinson’s Disease Rating 

Scale (UPDRS) are scales to measure the disease severity. 

Soft computing techniques have played a vital role in 

diagnosing several diseases and have been helpful in 

diagnosing Parkinson’s Disease as well using various 

symptoms of the disease like voice characteristics, gait 

and hand writing patterns of Parkinson’s patients [2].  

2. LITERATURE REVIEW 

Study shows that gait features are very useful in 

diagnosing Parkinson's disease. Salarian et al. found that 

spatio-temporal parameters of gait such as gait cycle time, 

double support, stance, stride velocity, and stride length 
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have high correlation with UPDRS subscores [3]. Cho et 

al. proposed a vision-based diagnostic system which 

employed combination of principal component analysis 

and linear discriminant analysis to differentiate different 

categories of gait simultaneously. Their experiment 

showed that linear discriminant analysis can recognize 

Parkinsonian gait [4]. Li. et al. developed a recognition 

system based on local linear embedding algorithm to 

extract and recognize the gait features from the 

information provided by 16-node body sensor network. 

The system was able to recognize gait patterns of 

Parkinson’s disease successfully with higher recognition 

rate than principal component analysis [5]. Chen et al. 

implemented a computer vision-based gait analysis 

approach with kernel-based principal component analysis 

to support clinical assessments of Parkinson’s disease by 

quantitatively determining gait cycle, stride length, stride 

velocity and cadence [6]. Klucken et al. proposed a 

mobile biosensor based Embedded Gait Analysis using 

Intelligent Technology (eGaIT) system to classify specific 

stages and motor symptoms in Parkinson’s disease 

automatically and objectively [7].  

3. SOFT COMPUTING MODELS 

Four soft computing models have been used in the current 

research work which is briefly explained in following 

subsections. 
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3.1 Classification Tree (CT) Model 

It uses decision tree based machine learning algorithm to 

build a prediction model from training data when labels of 

class are known in advance. The decision tree has three 

types of nodes i) root node, which has no incoming edges, 

but, can have 0 or more outgoing edges ii) internal node, 

which has exactly one incoming edge, but, can have two 

or more outgoing edges, iii) terminal nodes, each of 

which has exactly one incoming edge with no outgoing 

edges and class label assigned to these nodes. CT model 

is built following splitting rule and in order to get the best 

split the data is divided into two parts with maximum 

homogeneity [8].  

3.2 Cubist Model 

It is a rule based model where tree is converted to a set of 

rules which initially are paths from the top of the tree to 

the bottom. It yields better response than those generated 

by simple techniques like multivariate linear regressions. 

A tree is grown having intermediate terminal nodes and 

terminal leaves each of which contains a regression 

model. The linear regression model at terminal node of 

the tree does prediction, but smoothed by taking into 

account prediction from the linear model in previous node 

of the tree [9]. 

3.3 Naïve Bayes (NB) Model  

It is a very efficient classifier model based on Bayes 

probability theorem with assumption that attributes in a 

dataset is mutually independent. It can deal with real, 

discrete, streaming data and is useful in field of automated 

disease diagnosis. According to [10], assuming that   is 

any discrete-valued response variable and attributes 

       are any discrete or real-valued attributes with the 

objective of training a classifier that will provide the 

probability distribution over possible values of   for each 

new instance  . The probability of  th value of   

according to Bayes rules is given by equation (1).  

 (           )   
 (    ) (          )

∑  (    ) (          ) 
  (1) 

3.4 Linear Regression (LR) Model 

It models relationship between a scalar dependent 

variable y and one or more independent variables X. 

There are several types of LR model exist out of which 

Binomial logistic regression model is used in current 

research work. In this model likelihood  ( ) of the 

predictions is given by equation (2) [11]. 

 ( )   ∑ [     (  )  (    )   (    )] 
 
     (2) 

Where,   is a regression parameter, n is a number of 

responses,    is a response,    is a probability of     

4. EXPERIMENTAL RESULTS 

The experiment starts with gait dataset collection of PD 

patients and healthy controls. The dataset is obtained from 

PhysioNet [12] which is created by Hausdorff et al. [13]. 

The dataset consists of 1355 instances of gait data taken 

from 29 PD patients and 25 healthy controls during 

walking. Each instance of the dataset consists of 19 gait 

features (specified in Table 1) about the subject and a 

classifier label which denotes status of the subject i.e. PD 

patient or the healthy control. The dataset is divided into 

two subsets i.e. training dataset consisting of 1104 

instances and testing dataset consisting of 251 instances. 

The training and testing datasets are used for training and 

testing of the soft computing models respectively. First of 

all specified four soft computing models are trained, then, 

evaluation is done on the training and testing datasets 

based on performance measures viz. True Positive (TP), 

False Positive (FP), False Negative (FN), True Negative 

(TN), accuracy, sensitivity, specificity and Root Mean 

Square Error (RMSE). This evaluation is done over five 

folds where in each fold training and testing datasets are 

recreated taking different instances from full gait dataset. 

Finally, performances of the soft computing models are 

compared based on average accuracy, sensitivity, 

specificity and RMSE yielded over 5 folds. The 

comparison exhibited that Cubist model outperformed 

among others with average accuracy, sensitivity, 

specificity, RMSE being 86.336%, 89.480%, 81.934%, 

0.318 respectively on training dataset and 69.720%, 

73.632%, 64.242%, 0.504 respectively on testing dataset. 

Table 1: Description of gait features collected from the 

subjects 

Column 

No. 
Feature 

1 Sampling Time 

2-9 

Vertical Ground Reaction Force (in Newton) 

on each of 8 sensors located under the left 

foot 

10-17 

Vertical Ground Reaction Force (in Newton) 

on each of 8 sensors located under the right 

foot 

18 Total force under the left foot 

19 Total force under the right foot 
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Table 2: Performance matrix of the soft computing models on training datasets 

Round Method TP FP FN TN Accuracy(%) Sensitivity (%) Specificity(%) RMSE 

R-1 

CT 499 103 87 315 81.08 85.15 75.36 0.38 

Cubist 527 59 59 359 88.25 89.93 85.89 0.31 

LR 449 200 137 218 66.43 76.62 52.15 0.45 

NB 351 139 235 279 62.75 59.90 66.75 0.61 

R-2 

CT 495 102 91 316 80.78 84.47 75.60 0.38 

Cubist 508 81 78 337 84.16 86.69 80.62 0.34 

LR 445 212 141 206 64.84 75.94 49.28 0.46 

NB 376 157 210 261 63.45 64.16 62.44 0.60 

R-3 

CT 506 152 80 266 76.89 86.35 63.64 0.41 

Cubist 546 74 40 344 88.65 93.17 82.30 0.29 

LR 450 205 136 213 66.04 76.79 50.96 0.45 

NB 378 158 208 260 63.55 64.51 62.20 0.60 

R-4 

CT 505 140 80 279 78.09 86.32 66.59 0.40 

Cubist 540 72 45 347 88.35 92.31 82.82 0.30 

LR 454 210 131 209 66.04 77.61 49.88 0.46 

NB 384 163 201 256 63.75 65.64 61.10 0.60 

R-5 

CT 509 165 76 254 76.00 87.01 60.62 0.42 

Cubist 499 92 86 327 82.27 85.30 78.04 0.35 

LR 442 209 143 210 64.94 75.56 50.12 0.46 

NB 364 157 221 262 62.35 62.22 62.53 0.61 

Average 

CT 502.8 132.4 82.8 286.0 78.568 85.860 68.362 0.398 

Cubist 524.0 75.6 61.6 342.8 86.336 89.480 81.934 0.318 

LR 448.0 207.2 137.6 211.2 65.658 76.504 50.478 0.456 

NB 370.6 154.8 215.0 263.6 63.170 63.286 63.004 0.604 

Table 3: Performance matrix of the soft computing models on testing datasets 

Round Method TP FP FN TN Accuracy(%) Sensitivity (%) Specificity(%) RMSE 

R-1 

CT 109 41 37 64 68.92 74.66 60.95 0.48 

Cubist 103 32 43 73 70.12 70.55 69.52 0.51 

LR 87 28 59 77 65.34 59.59 73.33 0.94 

NB 84 44 62 61 57.77 57.53 58.10 0.65 

R-2 

CT 113 40 33 65 70.92 77.40 61.90 0.46 

Cubist 107 39 39 66 68.92 73.29 62.86 0.51 

LR 84 27 62 78 64.54 57.53 74.29 0.88 

NB 99 43 47 62 64.14 67.81 59.05 0.60 

R-3 

CT 108 42 38 63 68.13 73.97 60.00 0.47 

Cubist 109 41 37 64 68.92 74.66 60.95 0.50 

LR 74 27 72 78 60.56 50.68 74.29 0.95 

NB 89 36 57 69 62.95 60.96 65.71 0.61 

R-4 

CT 102 49 45 55 62.55 69.39 52.88 0.50 

Cubist 110 39 37 65 69.72 74.83 62.50 0.51 

LR 82 27 65 77 63.35 55.78 74.04 0.93 

NB 101 43 46 61 64.54 68.71 58.65 0.60 

R-5 

CT 122 48 25 56 70.92 82.99 53.85 0.44 

Cubist 110 36 37 68 70.92 74.83 65.38 0.49 

LR 83 29 64 75 62.95 56.46 72.12 0.88 

NB 81 38 66 66 58.57 55.10 63.46 0.64 

Average 

CT 110.8 44.0 35.6 60.6 68.288 75.682 57.916 0.47 

Cubist 107.8 37.4 38.6 67.2 69.720 73.632 64.242 0.504 

LR 82.0 27.6 64.4 77.0 63.348 56.008 73.614 0.916 

NB 90.8 40.8 55.6 63.8 61.594 62.022 60.994 0.620 
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Fig. 1: Comparison of average accuracy of the coft 

computing models on training datasets 

 
Fig. 2: Comparison of average sensitivity of the soft 

computing models on training dataset 

 
Fig. 3: Comparison of average specificity of the soft 

computing models on training datasets 

 

Fig. 4: Comparison of average RMSE of the soft computing 

models on training datasets 

 
Fig. 5: Comparison of average accuracy of the soft 

computing models on testing datasets 

 
Fig. 6: Comparison of average sensitivity of the soft 

computing models on testing datasets 

 
Fig. 7: Comparison of average specificity of the soft 

computing models on testing datasets 

 
Fig. 8: Comparison of average RMSE of the soft computing 

models on testing datasets 
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5. CONCLUSION 

In current paper four soft computing models i.e. 

Classification Tree, Cubist, Naïve Bayes and Linear 

Regression model are implemented which are then trained 

and tested using gait datasets collected from PD patients 

and the healthy controls. Then, the soft computing models 

are evaluated based on performance parameters viz. TP, 

FP, FN, TN, accuracy, sensitivity, specificity and RMSE. 

Finally, average accuracy, sensitivity, specificity and 

RMSE of the soft computing models calculated over 5-

folds and compared. The comparison exhibited that 

Cubist model outperformed among others. In future new 

soft computing models or hybrid ensemble models can be 

developed to further improve accuracy and reduce RMSE 

in the disease diagnosis. 
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