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Abstract 

 
Thermoluminescence glow peaks obeying first order and non-first order kinetics have been constantly used to 
explain the experimental glow curves relevant to dating and dosimetry. Analysis of glow peaks for numerically 
simulated peaks using MATLAB software has been investigated. The applicability of computerized glow curve 
deconvolution using MATLAB software has also been reported 
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1.0  INTRODUCTION 

Most insulating or semiconducting materials exhibit 
thermoluminescence (TL) glow curve ususally with a 
number of peaks when charge carriers are released. After a 
substance has absorbed energy from exposure to ionizing 
radiation such as X-rays or  -rays etc., its glow curve is 

extracted by heating the substance under a controlled 
heating scheme and measuring the glow intensity as a 
function of temperature. The shape of the glow curve is 
related to the orders of kinetics of the thermoluminescence 
peaks. Different traps lying within the valence band and the 
conduction band of the solid are characterized by various 
trapping parameters viz. activation energy (E) i.e. the trap 
depth, frequency factor (s) and the order of kinetics (b) 
[1,2]. Controlled measurement of the emitted light from the 
TL material is normally used for the determination of the 

radiation dose absorbed by it. To understand the behaviour 
of the material, it is necessary to analyse the glow curve 
and evaluate the trapping parameters. Glow curve is also 
used to study the dependence of TL on linear energy 
transfer (LET) from the radiation [3,4], predicting the 
fading in TL [5] and to determine the life time of glow 
peaks. 

The computerized glow curve deconvolution (CGCD) into 
the individual glow peaks have recognized to be of major 
importance in the analysis of TL. The information obtained 
from CGCD enables one to understand the mechanism of 
TL in different materials. Capabilities of several computer 
codes for CGCD and their assessment of glow curve 
parameters were adjudged by Glow Curve Analysis 
Intercomparison (GLOWCANIN) project [6-8], a joint 
venture of IRI at Delft, The Netherlands and CIMAT at 
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Madrid, Spain. In the present work, we attempt to develop a 
new computer code for the deconvolution of the TL glow 
curves using MATLAB software. We have considered a 
number of models : i) 1st order kinetics model of Randall 
and wilkins [9], ii) General Order Kinetics (GOK) model 
[10] which reduces to the Garlick and Gibson model for b = 
2 [11], iii) One Trap One Recombination centre model 
(OTOR) [12], iv) Interactive multitrap system [IMTS] 
model [12]. In the first step, we compute TL curves in 
different models and finally we apply the present technique 
to both computer generated and experimental glow peaks. 

2.0  METHODOLOGY 

We start from OTOR model [12] which can be represented 
by a set of coupled differential equations 
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The charge neutrality condition [12] in OTOR model is 
given by 

ch nnn                                                                       (3) 

where, n and nc are the concentration of electrons in traps 
and in the conduction band respectively. nh is the 
concentration of holes in the recombination centres. An and 
Ah are retrapping and recombination coefficients 
respectively. N is the total concentration of the electron 
traps, k is the Boltzmann constant and T is the  temperature. 
The TL intensity I is given by 
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The set of differential equations (1) and (2) cannot be 
solved exactly. Now invoking the quasi-equilibrium (QE) 
approximation [1,2] according to which 
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So, in the OTOR model, using the QE approximation the 
expression for TL intensity is given by 
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This expression for I is known as general one trap (GOT) 
expression for TL emission [13]. For no retrapping, An = 0. 
So the expression for I reduces to 
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Equation (12) is the well-known first order kinetics model 
of Randall and Wilkins [9]. Now for equal probability of 
recombination and retrapping i.e. An = Ah, equation (11) can 
be expressed as 
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Equation (13) is the well-known second order kinetics 
model of Garlick and Gibson [11]. Based on the equations 
(12-13), May and Partridge [10] suggested a general order 
kinetics model of TL given by 
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Although equation (14) reduces to equation (12) and (13) 
for b = 1 and 2 respectively, it cannot be obtained from the 
general one trap equation (11). So the GOK equation may 
be considered as an empirical equation. Solving equations 
(12-14), one obtains the expression for TL intensity as a 
function of temperature (T) for the linear heating profile 
given by 

tTT  0                                                            (15) 

where T0 is the initial temperature and   is the heating 

rate. The expressions for TL intensity for different orders of 
kinetics are as follow. 
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For b = 2 
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conditions are provided here. The corresponding maxima 
conditions are given here. 
For b = 1 
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Equation (18) reduces to equation (17) for b = 2 and in the 
limit b→1, we get equation (16).  

Now we come over to the IMTS model [12] in which the 
effect of thermally disconnected deep traps (TDDT) are 
taken into account. The importance of TDDTs in TL has 
been discussed by Fain et al. [14,15]. The set of coupled 
differential equations for IMTS model can be written as 
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Here, the charge neutrality condition is given by 

mnnn ch                                                             (25) 

Subsequently, I(t) is derived from equation (4). Here M and 
m are the concentrations of TDDTs and electrons trapped in  
TDDTs respectively. Am is the capture co-efficient for 
TDDTs. 

3.0 RESULTS AND DISCUSSIONS 

The temperature integral TdeJ
T
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equations (16‐18) cannot be evaluated analytically. Now, 
setting the value T0 = 0 and integrating by parts, we can 
write [16] 
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where Ei(x) is the exponential integral function with 
argument x [17].  

We have computed TL curves of different orders of kinetics  

viz. b = 1, 1.5 and 2 using MATLAB software and the 
curves are presented in figures (1‐3) respectively. 

 
Fig. 1: Glow curve in 1st order kinetics model generated 
by MATLAB. The input parameters are : b = 1, E = 1 
eV, s = 1012 s‐1 and n0 = N = 1012/cc. 

The shapes of computed curves are in good agreement with 
those reported by Pagonis et al. [12] which were derived by 
using a different software `Mathematica'. 

 

Fig. 2: Glow curve in kinetics order model produced by 
MATLAB. The input parameters are : b = 1.5, E = 1 eV, 
s = 1012 s‐1 and n0 = N = 1012/cc. 

After computing the TL curves in kinetic order formalism, 
we have used MATLAB software to compute TL curves 
corresponding to OTOR and IMTS models. At first, we 
attempt to solve the relevant sets of differential equation by 
using the 'ode45' solver of MATLAB which is a one-step 
Runge-Kutta medium order (fourth to fifth) solver. This is 
to note that the differential equations for different models 
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considered here are stiff equations, the 'ode45' solver for 
such stiff problems. Finally we have used the 'ode15s' 
solver of MATLAB which is an implicit, multi-step 
numerical differentiation solver of varying order (first to 
fifth). This method is suitable for problems that require 

 

Fig. 3: Glow curve in GOK model produced by 
MATLAB. The input parameters are : b = 2, E = 1 eV,   
s = 1012 s‐1 and n0 = N = 1012/cc. 

moderate accuracy. The computed TL curves calculated by 
using OTOR and IMTS models are presented in figures 4 
and 5 respectively. 

 
Fig. 4: Glow curve in OTOR model. The input 
parameters are : E = 1 eV s = 1012 s‐1, n0 = N = 1012/cc, An 
= 10-7 cm3 s‐1 and Ah = 10-5 cm3 s‐1. 

Now we come to the deconvolution process of the TL 
curves in kinetic order model. We plan to deconvolute the 
experimental TL peaks of colourless calcite [18] irradiated 

with 4.08 KGy of Co60  - rays under a linear heating rate 

of 3.03 Ks-1 without any filter. The CGCD results produced 
by using MATLAB are presented in table-1. 
Table 1: Fitting parameters of glow curves of colour-less 
calcite (without filter) corresponding to heating rate 3.03 Ks-1. 

Peak Tm Ecf bcf scf FOM 

No. (K) (eV)  (sec-1) (%) 

1 516 1.50 2 8.3 × 1013 
0.61 

2 613 1.65 2 5.3 × 1012 

 
Fig. 5: Glow curve in IMTS model. The input para-
meters are : E = 1 eV s = 1012 s‐1, n0 = N = 1012/cc, m0 = 
M = 1010/cc, An = 10-7 cm3 s‐1 and Ah = Am = 10-5 cm3 s‐1. 

The deconvoluted glow curves along with the experimental 
data points are shown in figure-6. It is evident the results 
that the resultant glow curve is a superposition of two 

 
Fig. 6: Deconvoluted glow curve of colourless calcite 
generated by using MATLAB. The scattered points 
(black) are the experimental results, the red line is the 
fitted curve and the blue lines are the deconvoluted 
peaks. 
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second-order TL peaks. The figure of merit corresponding 
to the entire glow curve is about 0.61% indicating 
reasonably good fit [19,20]. However, we observe that there 
is a scope for improvement in respect of the second 
peak.The same glow curve is deconvoluted using a 
FORTRAN77 algorithm presented by Chen and Kirsh [16] 
and the fitted parameters Ecf , bcf and scf are in close 
agreement with the present MATLAB results. 

4.0 CONCLUSION 

The MATLAB software is quite efficient for analyzing 
computer generated as well as experimental TL glow 
curves. The deconvolution parameters obtained by using 
MATLAB software agree fairly well with the results 
derived from other conventional codes used for this 
purpose. Further deconvolution of complex TL glow curves 
using more sophisticated models such as OTOR and IMTS 
are in the pipeline. 
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