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Abstract— The meta stable garnet lattice of Gd3Al5O12 have been synthesized by solid state reaction method which 

then allows an effective incorporation of rare earth ions Eu
3+

 activators for opto-functionality explorations. The 

characterizations of the products were achieved by combined means of XRD, SEM, and PL/PLE. The LnAG exhibit 

strong 592 nm and 616nm emissions (the 
5
D0→

7
F1 magnetic dipole transition and 

5
D0→

7
F2 electric dipole transition of 

Eu
3+

) upon UV excitation at 275 nm attributed to 
8
S7/2 → 

6
IJ with CIE chromaticity coordinates of x=0.62 and y=0.38 

(orange red), and the quenching concentration of Eu
3+

 was found. Owing to the improved crystallization of LnAG at a 

higher temperature, luminescence emission intensity increases significantly, especially above 1000
o
C. The Eu

3+
 doped 

GdAG phosphors are expected to be a new type of photoluminescent and scintillation material.  

Keywords— gadolinium aluminate garnet, Eu
3+

 doping, photoluminescence, lattice structure  

1. INTRODUCTION 1 

Rare-earth aluminate garnets (Ln3Al5O12, LnAG), 

especially YAG, are well-known inorganic compounds 

which have been widely studied for optical and high 

temperature mechanical applications [1]. When properly 

activated with luminescent centers, the LnAG compounds 

are important inorganic phosphors (such as YAG:Ce) 

finding wide applications in cathode-ray tubes (CRTs), 

field emission displays (FEDs), scintillation, vacuum 

fluorescent displays (VFDs), electroluminescence (EL), 

and so forth [2], because of their high chemical and 

radiation stabilities, wide band gap and excellent radiation 

conversion efficiency. The Gd3Al5O12 (GdAG) based 

phosphor, though it has higher density than YAG and the 

Gd
3+

 in this system can Sensitize the 
5
D0→

7
F1,2 red 

emissions of Eu
3+ 

through an efficient energy transfer [3], 

has been rarely reported. 

Phase evolution of the as-synthesized precursors upon 

calcination and luminescence behaviors of the oxide 

phosphors were studied in detail via the combined 

techniques of XRD, SEM, and PL/PLE luminescence 

spectroscopy. In the following sections, we report the 

synthesis, characterization, and luminescent performance 

of the GdAG: Eu garnet phosphors. 

2. EXPERIMENTAL  

To prepare Gd3Al5O12 with various concentrations of 

europium (1, 1.5, 2, and 2.5 mol%), stoichiometric 

amounts of reactant mixture is taken in alumina crucible 

and is fired in air at 1200
o
C for 3 hour in a muffle 
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furnace. The Eu
3+

 activated Gd3Al5O12 phosphors was 

prepared via high temperature modified solid state 

diffusion. The starting materials Gd2O3, Al2O3, were used 

to prepare the host phosphor and Eu2O3 as dopant. The 

mixture of reagents was grounded together for 45 minute 

to obtain a homogeneous powder. Powder was transferred 

to alumina crucible, and then heated in a muffle furnace at 

1200 °C for 3 hr. The phosphor materials were cooled to 

room temperature naturally.  

The samples were characterized by using 

Photoluminescence (PL), XRD and SEM. The 

photoluminescence (PL) emission and excitation spectra 

were recorded at room temperature by use of a Shimadzu 

RF-5301 PC spectrofluorophotometer 
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Fig. 1: PLE and PL spectra of Gd3Al5O12 phosphor 
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3. RESULTS AND DISCUSSION 

3.1 Photoluminescence Study of Base Phosphor 

Fig.1 depicts the PLE and PL spectra of sample 

Gd3Al5O12 calcined at 1200°C for 3 h. A general 

observation is that the PLE spectrum is composed of a 

strong CTB band located at 254 nm Upon UV excitation 

at 254nm, the phosphors exhibit the typical emission in 

the 350-500 region, with peaks at 400, 468nm. 

3.2 Eu3
+ 

Doping for Red Luminescence 

The PLE spectra of Gd3Al5O12:Eu
3+

 by monitoring 
5
D0→

7
FJ emission of Eu

3+
 at 616nm was measured and 

shown in Fig.2. The spectra are scaled on the 
8
S7/2 → 

6
IJ 

excitation (275nm) intensity. A series of much weaker 

intra-4f6 electronic transitions of Eu
3+ 

in the longer 

wavelength region as marked in the figure. It should be 

noted that the typical 
8
S7/2→

6
IJ intra f-f transition of Gd

3+
 

is clearly observed at 275 nm with high intensity, and this 

result is in good agreement with the result reported by Ji-

Guang Li et al., from providing direct evidence of an 

energy transfer from Gd
3+

 to the Eu
3+

 activators.  

Fig.3 shows the PL spectra of red-emitting 

Gd3Al5O12:Eu
3+

 upon excitation in the 
6
IJ level of Gd

3+
 at 

275nm. The emission measured from 400 – 650nm range, 

observed several peaks 419, 430, 467, 490, 543, 557, 592, 

595, 599, 616 and 628nm. All the peaks are attributed to 

Eu3+ ion transitions from 
5
Dj → 

7
Fj. Among these 

emissions high intense MD and ED transitions are 

observed. As the Eu concentration increases the MD and 

ED transitions of Eu
3+

 ion emission increases. Fig.3a 

shows the emission of MD and ED under 275nm 

excitation wavelength.  
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Fig. 2: PLE spectra of Eu3+ doped Gd3Al5O12 phosphor 

monitored under 616nm wavelength 

Fig.4 shows the emission under different excitation 

wavelengths. Fig.5 reveals the energy level diagram for 

the Gd
3+

- Eu
3+

 system, showing the possible visible 

quantum cutting by a two-step energy transfer from Gd
3+

 

to Eu
3+

 where 1 and 2 denote cross relaxation and direct 

energy transfer. Table 1 shows the emission peak 

wavelengths and their intensities under different 

excitation wavelengths. 
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Fig. 3: PL spectra of Eu3+ doped Gd3Al5O12 phosphor under 

275nm excitation 

Table 1: Emission peak wavelengths and their intensities 

under different excitation 

S. 

No 
Sample 

Emission 

peak 

Wavelengt

hs (nm) 

Emission peak 

Intensities under 

λEx=2

54nm 

λEx=2

69nm 

λEx=2

75nm 

1 Gd3Al5

O12:Eu 

(3.0%) 

419 109 101 94 

2 430 95 103 103 

3 467 151 143 129 

4 557 47 64 60 

5 592 592 ˃1000 ˃1000 

6 595 592 950 960 

7 599 350 600 615 

8 616 843 ˃1000 ˃1000 

9 628 189 296 292 

580 590 600 610 620 630 640
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Fig. 3(a): PL spectra of Eu3+ doped Gd3Al5O12 phosphor 

under 275nm excitation range from 580-640nm 
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Fig. 4: PL spectra of Eu3+ (3.0%) doped Gd3Al5O12 phosphor 

under different excitations 

 

Fig. 5: Charge transfer mechanism 

 

Fig. 6: XRD pattern of Eu3+ (3.0%) doped Gd3Al5O12 

phosphor 

Fig.7 is the SEM micrograph of the phosphor understudy. 

It is found from the micrograph agglomerated particles 

with average size is around 3-5 microns.  

Table.2 is the emission wavelengths and allowed 

transitions of the Gd and Eu in 3+ states. Fig.5 is the 

charge transfer mechanism and the possible transfer of 

energy from Gd to Eu in 3+ states. 

Table 2: The following are the allowed transitions of RE3+ 

Emission peak 

Wavelength (nm) 
Transition 

430 
5
D3 → 

7
F0 

467 
5
D2 → 

7
F0 

557 
5
D1 → 

7
F0 

592 
5
D0 → 

7
F1 

595 
5
D0 → 

7
F1 

599 
5
D0 → 

7
F1 

616 
5
D0 → 

7
F2 

628 
5
D0 → 

7
F2 

 

Fig. 7: SEM image of Eu3+ (3.0%) doped Gd3Al5O12 

phosphor 

4. CONCLUSIONS 

The Eu
3+

 (3.0%) doped Gd3Al5O12 phosphors were 

synthesized successfully via a solid-state reaction. 

Photoluminescence exhibit orange red (594nm) and red 

(616, 627nm) dominant luminescence along with blue and 

green emissions. From XRD studies the compound is 

mostly in single phase. The results in this work 

demonstrate that this phosphor is expected to be 

promising candidates for application in display devices. 
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